Abstract:Named Entity Recognition (NER) systems often demonstrate great performance on in-distribution data, but perform poorly on examples drawn from a shifted distribution. One way to evaluate the generalization ability of NER models is to use adversarial examples, on which the specific variations associated with named entities are rarely considered. To this end, we propose leveraging expert-guided heuristics to change the entity tokens and their surrounding contexts thereby altering their entity types as adversarial attacks. Using expert-guided heuristics, we augmented the CoNLL 2003 test set and manually annotated it to construct a high-quality challenging set. We found that state-of-the-art NER systems trained on CoNLL 2003 training data drop performance dramatically on our challenging set. By training on adversarial augmented training examples and using mixup for regularization, we were able to significantly improve the performance on the challenging set as well as improve out-of-domain generalization which we evaluated by using OntoNotes data. We have publicly released our dataset and code at https://github.com/GT-SALT/Guided-Adversarial-Augmentation.
Abstract:For highly distributed environments such as edge computing, collaborative learning approaches eschew the dependence on a global, shared model, in favor of models tailored for each location. Creating tailored models for individual learning contexts reduces the amount of data transfer, while collaboration among peers provides acceptable model performance. Collaboration assumes, however, the availability of knowledge transfer mechanisms, which are not trivial for deep learning models where knowledge isn't easily attributed to precise model slices. We present Canoe - a framework that facilitates knowledge transfer for neural networks. Canoe provides new system support for dynamically extracting significant parameters from a helper node's neural network and uses this with a multi-model boosting-based approach to improve the predictive performance of the target node. The evaluation of Canoe with different PyTorch and TensorFlow neural network models demonstrates that the knowledge transfer mechanism improves the model's adaptiveness to changes up to 3.5X compared to learning in isolation, while affording several magnitudes reduction in data movement costs compared to federated learning.