Abstract:This paper presents a comprehensive review of methods covering significant subjective and objective human stress detection techniques available in the literature. The methods for measuring human stress responses could include subjective questionnaires (developed by psychologists) and objective markers observed using data from wearable and non-wearable sensors. In particular, wearable sensor-based methods commonly use data from electroencephalography, electrocardiogram, galvanic skin response, electromyography, electrodermal activity, heart rate, heart rate variability, and photoplethysmography both individually and in multimodal fusion strategies. Whereas, methods based on non-wearable sensors include strategies such as analyzing pupil dilation and speech, smartphone data, eye movement, body posture, and thermal imaging. Whenever a stressful situation is encountered by an individual, physiological, physical, or behavioral changes are induced which help in coping with the challenge at hand. A wide range of studies has attempted to establish a relationship between these stressful situations and the response of human beings by using different kinds of psychological, physiological, physical, and behavioral measures. Inspired by the lack of availability of a definitive verdict about the relationship of human stress with these different kinds of markers, a detailed survey about human stress detection methods is conducted in this paper. In particular, we explore how stress detection methods can benefit from artificial intelligence utilizing relevant data from various sources. This review will prove to be a reference document that would provide guidelines for future research enabling effective detection of human stress conditions.
Abstract:In this paper, we present an experimental study for the classification of perceived human stress using non-invasive physiological signals. These include electroencephalography (EEG), galvanic skin response (GSR), and photoplethysmography (PPG). We conducted experiments consisting of steps including data acquisition, feature extraction, and perceived human stress classification. The physiological data of $28$ participants are acquired in an open eye condition for a duration of three minutes. Four different features are extracted in time domain from EEG, GSR and PPG signals and classification is performed using multiple classifiers including support vector machine, the Naive Bayes, and multi-layer perceptron (MLP). The best classification accuracy of 75% is achieved by using MLP classifier. Our experimental results have shown that our proposed scheme outperforms existing perceived stress classification methods, where no stress inducers are used.