Point cloud upsampling using deep learning has been paid various efforts in the past few years. Recent supervised deep learning methods are restricted to the size of training data and is limited in terms of covering all shapes of point clouds. Besides, the acquisition of such amount of data is unrealistic, and the network generally performs less powerful than expected on unseen records. In this paper, we present an unsupervised approach to upsample point clouds internally referred as "Zero Shot" Point Cloud Upsampling (ZSPU) at holistic level. Our approach is solely based on the internal information provided by a particular point cloud without patching in both self-training and testing phases. This single-stream design significantly reduces the training time of the upsampling task, by learning the relation between low-resolution (LR) point clouds and their high (original) resolution (HR) counterparts. This association will provide super-resolution (SR) outputs when original point clouds are loaded as input. We demonstrate competitive performance on benchmark point cloud datasets when compared to other upsampling methods. Furthermore, ZSPU achieves superior qualitative results on shapes with complex local details or high curvatures.