Over the last decade, Computer Vision, the branch of Artificial Intelligence aimed at understanding the visual world, has evolved from simply recognizing objects in images to describing pictures, answering questions about images, aiding robots maneuver around physical spaces and even generating novel visual content. As these tasks and applications have modernized, so too has the reliance on more data, either for model training or for evaluation. In this chapter, we demonstrate that novel interaction strategies can enable new forms of data collection and evaluation for Computer Vision. First, we present a crowdsourcing interface for speeding up paid data collection by an order of magnitude, feeding the data-hungry nature of modern vision models. Second, we explore a method to increase volunteer contributions using automated social interventions. Third, we develop a system to ensure human evaluation of generative vision models are reliable, affordable and grounded in psychophysics theory. We conclude with future opportunities for Human-Computer Interaction to aid Computer Vision.