Cloud virtual reality (VR) gaming traffic characteristics such as frame size, inter-arrival time, and latency need to be carefully studied as a first step toward scalable VR cloud service provisioning. To this end, in this paper we analyze the behavior of VR gaming traffic and Quality of Service (QoS) when VR rendering is conducted remotely in the cloud. We first build a VR testbed utilizing a cloud server, a commercial VR headset, and an off-the-shelf WiFi router. Using this testbed, we collect and process cloud VR gaming traffic data from different games under a number of network conditions and fixed and adaptive video encoding schemes. To analyze the application-level characteristics such as video frame size, frame inter-arrival time, frame loss and frame latency, we develop an interval threshold based identification method for video frames. Based on the frame identification results, we present two statistical models that capture the behaviour of the VR gaming video traffic. The models can be used by researchers and practitioners to generate VR traffic models for simulations and experiments - and are paramount in designing advanced radio resource management (RRM) and network optimization for cloud VR gaming services. To the best of the authors' knowledge, this is the first measurement study and analysis conducted using a commercial cloud VR gaming platform, and under both fixed and adaptive bitrate streaming. We make our VR traffic data-sets publicly available for further research by the community.