Class imbalance in graph data poses significant challenges for node classification. Existing methods, represented by SMOTE-based approaches, partially alleviate this issue but still exhibit limitations during imbalanced scenario construction. Self-supervised learning (SSL) offers a promising solution by synthesizing minority nodes from the data itself, yet its potential remains unexplored. In this paper, we analyze the limitations of SMOTE-based approaches and introduce VIGraph, a novel SSL model based on the self-supervised Variational Graph Auto-Encoder (VGAE) that leverages Variational Inference (VI) to generate minority nodes. Specifically, VIGraph strictly adheres to the concept of imbalance when constructing imbalanced graphs and utilizes the generative VGAE to generate minority nodes. Moreover, VIGraph introduces a novel Siamese contrastive strategy at the decoding phase to improve the overall quality of generated nodes. VIGraph can generate high-quality nodes without reintegrating them into the original graph, eliminating the "Generating, Reintegrating, and Retraining" process found in SMOTE-based methods. Experiments on multiple real-world datasets demonstrate that VIGraph achieves promising results for class-imbalanced node classification tasks.