Video prediction, which aims to synthesize new consecutive frames subsequent to an existing video. However, its performance suffers from uncertainty of the future. As a potential weather application for video prediction, short time precipitation nowcasting is a more challenging task than other ones as its uncertainty is highly influenced by temperature, atmospheric, wind, humidity and such like. To address this issue, we propose a star-bridge neural network (StarBriNet). Specifically, we first construct a simple yet effective star-shape information bridge for RNN to transfer features across time-steps. We also propose a novel loss function designed for precipitaion nowcasting task. Furthermore, we utilize group normalization to refine the predictive performance of our network. Experiments in a Moving-Digital dataset and a weather predicting dataset demonstrate that our model outperforms the state-of-the-art algorithms for video prediction and precipitation nowcasting, achieving satisfied weather forecasting performance.