Large Language Models (LLMs) rely on generating extensive intermediate reasoning units (e.g., tokens, sentences) to enhance final answer quality across a wide range of complex tasks. While generating multiple reasoning paths or iteratively refining rationales proves effective for improving performance, these approaches inevitably result in significantly higher inference costs. In this work, we propose a novel sentence-level rationale reduction training framework that leverages likelihood-based criteria, verbosity, to identify and remove redundant reasoning sentences. Unlike previous approaches that utilize token-level reduction, our sentence-level reduction framework maintains model performance while reducing generation length. This preserves the original reasoning abilities of LLMs and achieves an average 17.15% reduction in generation costs across various models and tasks.