Complex question answering (CQA) over raw text is a challenging task. A prominent approach to this task is based on the programmer-interpreter framework, where the programmer maps the question into a sequence of reasoning actions which is then executed on the raw text by the interpreter. Learning an effective CQA model requires large amounts of human-annotated data,consisting of the ground-truth sequence of reasoning actions, which is time-consuming and expensive to collect at scale. In this paper, we address the challenge of learning a high-quality programmer (parser) by projecting natural human-generated questions into unnatural machine-generated questions which are more convenient to parse. We firstly generate synthetic (question,action sequence) pairs by a data generator, and train a semantic parser that associates synthetic questions with their corresponding action sequences. To capture the diversity when applied tonatural questions, we learn a projection model to map natural questions into their most similar unnatural questions for which the parser can work well. Without any natural training data, our projection model provides high-quality action sequences for the CQA task. Experimental results show that the QA model trained exclusively with synthetic data generated by our method outperforms its state-of-the-art counterpart trained on human-labeled data.