Good data augmentation is one of the key factors that lead to the empirical success of self-supervised representation learning such as contrastive learning and masked language modeling, yet theoretical understanding of its role in learning good representations remains limited. Recent work has built the connection between self-supervised learning and approximating the top eigenspace of a graph Laplacian operator. Learning a linear probe on top of such features can naturally be connected to RKHS regression. In this work, we use this insight to perform a statistical analysis of augmentation-based pretraining. We start from the isometry property, a key geometric characterization of the target function given by the augmentation. Our first main theorem provides, for an arbitrary encoder, near tight bounds for both the estimation error incurred by fitting the linear probe on top of the encoder, and the approximation error entailed by the fitness of the RKHS the encoder learns. Our second main theorem specifically addresses the case where the encoder extracts the top-d eigenspace of a Monte-Carlo approximation of the underlying kernel with the finite pretraining samples. Our analysis completely disentangles the effects of the model and the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance on synthetic and real datasets.