Recognizing handwriting images is challenging due to the vast variation in writing style across many people and distinct linguistic aspects of writing languages. In Vietnamese, besides the modern Latin characters, there are accent and letter marks together with characters that draw confusion to state-of-the-art handwriting recognition methods. Moreover, as a low-resource language, there are not many datasets for researching handwriting recognition in Vietnamese, which makes handwriting recognition in this language have a barrier for researchers to approach. Recent works evaluated offline handwriting recognition methods in Vietnamese using images from an online handwriting dataset constructed by connecting pen stroke coordinates without further processing. This approach obviously can not measure the ability of recognition methods effectively, as it is trivial and may be lack of features that are essential in offline handwriting images. Therefore, in this paper, we propose the Transferring method to construct a handwriting image dataset that associates crucial natural attributes required for offline handwriting images. Using our method, we provide a first high-quality synthetic dataset which is complex and natural for efficiently evaluating handwriting recognition methods. In addition, we conduct experiments with various state-of-the-art methods to figure out the challenge to reach the solution for handwriting recognition in Vietnamese.