In this paper, we study the problem of estimating the direction of arrival (DOA) using a sparsely sampled uniform linear array (ULA). Based on an initial incomplete ULA measurement, our strategy is to choose a sparse subset of array elements for measuring the next snapshot. Then, we use a Hankel-structured matrix completion to interpolate for the missing ULA measurements. Finally, the source DOAs are estimated using a subspace method such as Prony on the fully recovered ULA. We theoretically provide a sufficient bound for the number of required samples (array elements) for perfect recovery. The numerical comparisons of the proposed method with existing techniques such as atomic-norm minimization and off-the-grid approaches confirm the superiority of the proposed method.