By reducing the curvature of the loss surface in the parameter space, Sharpness-aware minimization (SAM) yields widespread robustness improvement under domain transfer. Instead of focusing on parameters, however, this work considers the transferability of representations as the optimization target for out-of-domain generalization in a fine-tuning setup. To encourage the retention of transferable representations, we consider trust region-based fine-tuning methods, which exploit task-specific skills without forgetting task-agnostic representations from pre-training. We unify parameter- and representation-space smoothing approaches by using trust region bounds to inform SAM-style regularizers on both of these optimization surfaces. We propose Trust Region Aware Minimization (TRAM), a fine-tuning algorithm that optimizes for flat minima and smooth, informative representations without forgetting pre-trained structure. We find that TRAM outperforms both sharpness-aware and trust region-based optimization methods on cross-domain language modeling and cross-lingual transfer, where robustness to domain transfer and representation generality are critical for success. TRAM establishes a new standard in training generalizable models with minimal additional computation.