Deep reinforcement learning (DRL) remains challenging in tasks with sparse rewards. These sparse rewards often only indicate whether the task is partially or fully completed, meaning that many exploration actions must be performed before the agent obtains useful feedback. Hence, most existing DRL algorithms fail to learn feasible policies within a reasonable time frame. To overcome this problem, we develop an approach that exploits offline demonstration trajectories for faster and more efficient online RL in sparse reward settings. Our key insight is that by regarding offline demonstration trajectories as guidance, instead of imitating them, our method learns a policy whose state-action visitation marginal distribution matches that of offline demonstrations. Specifically, we introduce a novel trajectory distance based on maximum mean discrepancy (MMD) and formulate policy optimization as a distance-constrained optimization problem. Then, we show that this distance-constrained optimization problem can be reduced into a policy-gradient algorithm with shaped rewards learned from offline demonstrations. The proposed algorithm is evaluated on extensive discrete and continuous control tasks with sparse and deceptive rewards. The experimental results indicate that our proposed algorithm is significantly better than the baseline methods regarding diverse exploration and learning the optimal policy.