Score-matching and diffusion models have emerged as state-of-the-art generative models for both conditional and unconditional generation. Classifier-guided diffusion models are created by training a classifier on samples obtained from the forward-diffusion process (i.e., from data to noise). In this paper, we propose denoising-assisted (DA) classifiers wherein the diffusion classifier is trained using both noisy and denoised examples as simultaneous inputs to the model. We differentiate between denoising-assisted (DA) classifiers and noisy classifiers, which are diffusion classifiers that are only trained on noisy examples. Our experiments on Cifar10 and Imagenet show that DA-classifiers improve over noisy classifiers both quantitatively in terms of generalization to test data and qualitatively in terms of perceptually-aligned classifier-gradients and generative modeling metrics. Finally, we describe a semi-supervised framework for training diffusion classifiers and our experiments, that also include positive-unlabeled settings, demonstrate improved generalization of DA-classifiers over noisy classifiers.