We proved that a trained model in supervised deep learning minimizes the conditional risk for each input (Theorem 2.1). This property provided insights into the behavior of trained models and established a connection between supervised and unsupervised learning in some cases. In addition, when the labels are intractable but can be written as a conditional risk minimizer, we proved an equivalent form of the original supervised learning problem with accessible labels (Theorem 2.2). We demonstrated that many existing works, such as Noise2Score, Noise2Noise and score function estimation can be explained by our theorem. Moreover, we derived a property of classification problem with noisy labels using Theorem 2.1 and validated it using MNIST dataset. Furthermore, We proposed a method to estimate uncertainty in image super-resolution based on Theorem 2.2 and validated it using ImageNet dataset. Our code is available on github.