Drone navigation through natural language commands remains a significant challenge due to the lack of publicly available multi-modal datasets and the intricate demands of fine-grained visual-text alignment. In response to this pressing need, we present a new human-computer interaction annotation benchmark called GeoText-1652, meticulously curated through a robust Large Language Model (LLM)-based data generation framework and the expertise of pre-trained vision models. This new dataset seamlessly extends the existing image dataset, \ie, University-1652, with spatial-aware text annotations, encompassing intricate image-text-bounding box associations. Besides, we introduce a new optimization objective to leverage fine-grained spatial associations, called blending spatial matching, for region-level spatial relation matching. Extensive experiments reveal that our approach maintains an exceptional recall rate under varying description complexities. This underscores the promising potential of our approach in elevating drone control and navigation through the seamless integration of natural language commands in real-world scenarios.