In this paper, we investigate the streaming bandits problem, wherein the learner aims to minimize regret by dealing with online arriving arms and sublinear arm memory. We establish the tight worst-case regret lower bound of $\Omega \left( (TB)^{\alpha} K^{1-\alpha}\right), \alpha = 2^{B} / (2^{B+1}-1)$ for any algorithm with a time horizon $T$, number of arms $K$, and number of passes $B$. The result reveals a separation between the stochastic bandits problem in the classical centralized setting and the streaming setting with bounded arm memory. Notably, in comparison to the well-known $\Omega(\sqrt{KT})$ lower bound, an additional double logarithmic factor is unavoidable for any streaming bandits algorithm with sublinear memory permitted. Furthermore, we establish the first instance-dependent lower bound of $\Omega \left(T^{1/(B+1)} \sum_{\Delta_x>0} \frac{\mu^*}{\Delta_x}\right)$ for streaming bandits. These lower bounds are derived through a unique reduction from the regret-minimization setting to the sample complexity analysis for a sequence of $\epsilon$-optimal arms identification tasks, which maybe of independent interest. To complement the lower bound, we also provide a multi-pass algorithm that achieves a regret upper bound of $\tilde{O} \left( (TB)^{\alpha} K^{1 - \alpha}\right)$ using constant arm memory.