Integrative Complexity (IC) is a psychometric that measures the ability of a person to recognize multiple perspectives and connect them, thus identifying paths for conflict resolution. IC has been linked to a wide variety of political, social and personal outcomes but evaluating it is a time-consuming process requiring skilled professionals to manually score texts, a fact which accounts for the limited exploration of IC at scale on social media.We combine natural language processing and machine learning to train an IC classification model that achieves state-of-the-art performance on unseen data and more closely adheres to the established structure of the IC coding process than previous automated approaches. When applied to the content of 400k+ comments from online fora about depression and knowledge exchange, our model was capable of replicating key findings of prior work, thus providing the first example of using IC tools for large-scale social media analytics.