Many real-world optimisation problems involve dynamic and stochastic components. While problems with multiple interacting components are omnipresent in inherently dynamic domains like supply-chain optimisation and logistics, most research on dynamic problems focuses on single-component problems. With this article, we define a number of scenarios based on the Travelling Thief Problem to enable research on the effect of dynamic changes to sub-components. Our investigations of 72 scenarios and seven algorithms show that -- depending on the instance, the magnitude of the change, and the algorithms in the portfolio -- it is preferable to either restart the optimisation from scratch or to continue with the previously valid solutions.