The growing demand for electric vehicles requires the development of automated car charging methods. At the moment, the process of charging an electric car is completely manual, and that requires physical effort to accomplish the task, which is not suitable for people with disabilities. Typically, the effort in the research is focused on detecting the position and orientation of the socket, which resulted in a relatively high accuracy, $\pm 5 \: mm $ and $\pm 10^o$. However, this accuracy is not enough to complete the charging process. In this work, we focus on designing a novel methodology for robust robotic plug-in and plug-out based on human haptics, to overcome the error in the position and orientation of the socket. Participants were invited to perform the charging task, and their cognitive capabilities were recognized by measuring the applied forces along with the movement of the charger. Three controllers were designed based on impedance control to mimic the human patterns of charging an electric car. The recorded data from humans were used to calibrate the parameters of the impedance controllers: inertia $M_d$, damping $D_d$, and stiffness $K_d$. A robotic validation was performed, where the designed controllers were applied to the robot UR10. Using the proposed controllers and the human kinesthetic data, it was possible to successfully automate the operation of charging an electric car.