The traditional object retrieval task aims to learn a discriminative feature representation with intra-similarity and inter-dissimilarity, which supposes that the objects in an image are manually or automatically pre-cropped exactly. However, in many real-world searching scenarios (e.g., video surveillance), the objects (e.g., persons, vehicles, etc.) are seldom accurately detected or annotated. Therefore, object-level retrieval becomes intractable without bounding-box annotation, which leads to a new but challenging topic, i.e. image-level search. In this paper, to address the image search issue, we first introduce an end-to-end Integrated Net (I-Net), which has three merits: 1) A Siamese architecture and an on-line pairing strategy for similar and dissimilar objects in the given images are designed. 2) A novel on-line pairing (OLP) loss is introduced with a dynamic feature dictionary, which alleviates the multi-task training stagnation problem, by automatically generating a number of negative pairs to restrict the positives. 3) A hard example priority (HEP) based softmax loss is proposed to improve the robustness of classification task by selecting hard categories. With the philosophy of divide and conquer, we further propose an improved I-Net, called DC-I-Net, which makes two new contributions: 1) two modules are tailored to handle different tasks separately in the integrated framework, such that the task specification is guaranteed. 2) A class-center guided HEP loss (C2HEP) by exploiting the stored class centers is proposed, such that the intra-similarity and inter-dissimilarity can be captured for ultimate retrieval. Extensive experiments on famous image-level search oriented benchmark datasets demonstrate that the proposed DC-I-Net outperforms the state-of-the-art tasks-integrated and tasks-separated image search models.