Empowering language is important in many real-world contexts, from education to workplace dynamics to healthcare. Though language technologies are growing more prevalent in these contexts, empowerment has not been studied in NLP, and moreover, it is inherently challenging to operationalize because of its subtle, implicit nature. This work presents the first computational exploration of empowering language. We first define empowerment detection as a new task, grounding it in linguistic and social psychology literature. We then crowdsource a novel dataset of Reddit posts labeled for empowerment, reasons why these posts are empowering to readers, and the social relationships between posters and readers. Our preliminary analyses show that this dataset, which we call TalkUp, can be used to train language models that capture empowering and disempowering language. More broadly, as it is rich with the ambiguities and diverse interpretations of real-world language, TalkUp provides an avenue to explore implication, presuppositions, and how social context influences the meaning of language.