Integrated sensing and communications (ISAC) is a critical enabler for emerging 6G applications, and at its core lies in the dual-functional waveform design. While orthogonal frequency division multiplexing (OFDM) has been a popular basic waveform, its primitive version falls short in sensing due to the inherent unregulated auto-correlation properties. Furthermore, the sensitivity to Doppler shift hinders its broader applications in dynamic scenarios. To address these issues, we propose a superposed index-modulated OFDM (S-IM-OFDM). The proposed scheme improves the sensing performance without excess power consumption by translating the energy efficiency of IM-OFDM onto sensing-oriented signals over OFDM. Also, it maintains excellent communication performance in time-varying channels by leveraging the sensed parameters to compensate for Doppler. Compared to conventional OFDM, the proposed S-IM-OFDM waveform exhibits better sensing capabilities and wider applicability in dynamic scenarios. Both theoretical analyses and simulations corroborate its dual benefits.