https://github.com/WentaoTan/Interleaved-Learning.
Domain generalization (DG) for person re-identification (ReID) is a challenging problem, as there is no access to target domain data permitted during the training process. Most existing DG ReID methods employ the same features for the updating of the feature extractor and classifier parameters. This common practice causes the model to overfit to existing feature styles in the source domain, resulting in sub-optimal generalization ability on target domains even if meta-learning is used. To solve this problem, we propose a novel style interleaved learning framework. Unlike conventional learning strategies, interleaved learning incorporates two forward propagations and one backward propagation for each iteration. We employ the features of interleaved styles to update the feature extractor and classifiers using different forward propagations, which helps the model avoid overfitting to certain domain styles. In order to fully explore the advantages of style interleaved learning, we further propose a novel feature stylization approach to diversify feature styles. This approach not only mixes the feature styles of multiple training samples, but also samples new and meaningful feature styles from batch-level style distribution. Extensive experimental results show that our model consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID, yielding clear advantages in computational efficiency. Code is available at