https://github.com/MikeGu721/StrucText-Eval
Given the substantial volumes of structured data held by many companies, enabling Large Language Models (LLMs) to directly understand structured text in non-structured forms could significantly enhance their capabilities across various business scenarios. To this end, we propose evaluation data generation method for assessing LLM's ability in understanding the structure-rich text, which generates structured data of controllable complexity based on manually crafted question templates and generation rules. Building on this generation method, we introduce StrucText-Eval, a benchmark comprising 6,032 questions across 8 different structured languages and 29 specific tasks. Furthermore, considering human proficiency in rule-based tasks, we also present StrucText-Eval-Hard, which includes 3,016 questions designed to further examine the gap between LLMs and human performance. Results indicate that the best-performing LLM currently achieve an accuracy of 65.0\% on StrucText-Eval-Hard, while human accuracy reaches up to 95.7\%. Moreover, while fine-tuning using StrucText-Eval can enhance existing LLMs' understanding of all structured languages, it does not necessarily improve performance across all task types. The benchmark and generation codes are open sourced in