https://github.com/rosewang2008/remath}.
Scaling high-quality tutoring is a major challenge in education. Because of the growing demand, many platforms employ novice tutors who, unlike professional educators, struggle to effectively address student mistakes and thus fail to seize prime learning opportunities for students. In this paper, we explore the potential for large language models (LLMs) to assist math tutors in remediating student mistakes. We present ReMath, a benchmark co-developed with experienced math teachers that deconstructs their thought process for remediation. The benchmark consists of three step-by-step tasks: (1) infer the type of student error, (2) determine the strategy to address the error, and (3) generate a response that incorporates that information. We evaluate the performance of state-of-the-art instruct-tuned and dialog models on ReMath. Our findings suggest that although models consistently improve upon original tutor responses, we cannot rely on models alone to remediate mistakes. Providing models with the error type (e.g., the student is guessing) and strategy (e.g., simplify the problem) leads to a 75% improvement in the response quality over models without that information. Nonetheless, despite the improvement, the quality of the best model's responses still falls short of experienced math teachers. Our work sheds light on the potential and limitations of using current LLMs to provide high-quality learning experiences for both tutors and students at scale. Our work is open-sourced at this link: \url{