Conversational Information Retrieval (CIR) is an emerging field of Information Retrieval (IR) at the intersection of interactive IR and dialogue systems for open domain information needs. In order to optimize these interactions and enhance the user experience, it is necessary to improve IR models by taking into account sequential heterogeneous user-system interactions. Reinforcement learning has emerged as a paradigm particularly suited to optimize sequential decision making in many domains and has recently appeared in IR. However, training these systems by reinforcement learning on users is not feasible. One solution is to train IR systems on user simulations that model the behavior of real users. Our contribution is twofold: 1)reviewing the literature on user modeling and user simulation for information access, and 2) discussing the different research perspectives for user simulations in the context of CIR