The Kalman filter is extensively used for state estimation for linear systems under Gaussian noise. When non-Gaussian L\'evy noise is present, the conventional Kalman filter may fail to be effective due to the fact that the non-Gaussian L\'evy noise may have infinite variance. A modified Kalman filter for linear systems with non-Gaussian L\'evy noise is devised. It works effectively with reasonable computational cost. Simulation results are presented to illustrate this non-Gaussian filtering method.