Hematoxylin and Eosin (H&E) staining is the most commonly used for disease diagnosis and tumor recurrence tracking. Hematoxylin excels at highlighting nuclei, whereas eosin stains the cytoplasm. However, H&E stain lacks details for differentiating different types of cells relevant to identifying the grade of the disease or response to specific treatment variations. Pathologists require special immunohistochemical (IHC) stains that highlight different cell types. These stains help in accurately identifying different regions of disease growth and their interactions with the cell's microenvironment. The advent of deep learning models has made Image-to-Image (I2I) translation a key research area, reducing the need for expensive physical staining processes. Pix2Pix and CycleGAN are still the most commonly used methods for virtual staining applications. However, both suffer from hallucinations or staining irregularities when H&E stain has less discriminate information about the underlying cells IHC needs to highlight (e.g.,CD3 lymphocytes). Diffusion models are currently the state-of-the-art models for image generation and conditional generation tasks. However, they require extensive and diverse datasets (millions of samples) to converge, which is less feasible for virtual staining applications.Inspired by the success of multitask deep learning models for limited dataset size, we propose StainDiffuser, a novel multitask dual diffusion architecture for virtual staining that converges under a limited training budget. StainDiffuser trains two diffusion processes simultaneously: (a) generation of cell-specific IHC stain from H&E and (b) H&E-based cell segmentation using coarse segmentation only during training. Our results show that StainDiffuser produces high-quality results for easier (CK8/18,epithelial marker) and difficult stains(CD3, Lymphocytes).