Temporal video grounding (TVG) is a critical task in video content understanding. Despite significant advancements, existing methods often limit in capturing the fine-grained relationships between multimodal inputs and the high computational costs with processing long video sequences. To address these limitations, we introduce a novel SpikeMba: multi-modal spiking saliency mamba for temporal video grounding. In our work, we integrate the Spiking Neural Networks (SNNs) and state space models (SSMs) to capture the fine-grained relationships of multimodal features effectively. Specifically, we introduce the relevant slots to enhance the model's memory capabilities, enabling a deeper contextual understanding of video sequences. The contextual moment reasoner leverages these slots to maintain a balance between contextual information preservation and semantic relevance exploration. Simultaneously, the spiking saliency detector capitalizes on the unique properties of SNNs to accurately locate salient proposals. Our experiments demonstrate the effectiveness of SpikeMba, which consistently outperforms state-of-the-art methods across mainstream benchmarks.