Purpose: To investigate the use of a Vision Transformer (ViT) to reconstruct/denoise GABA-edited magnetic resonance spectroscopy (MRS) from a quarter of the typically acquired number of transients using spectrograms. Theory and Methods: A quarter of the typically acquired number of transients collected in GABA-edited MRS scans are pre-processed and converted to a spectrogram image representation using the Short-Time Fourier Transform (STFT). The image representation of the data allows the adaptation of a pre-trained ViT for reconstructing GABA-edited MRS spectra (Spectro-ViT). The Spectro-ViT is fine-tuned and then tested using \textit{in vivo} GABA-edited MRS data. The Spectro-ViT performance is compared against other models in the literature using spectral quality metrics and estimated metabolite concentration values. Results: The Spectro-ViT model significantly outperformed all other models in four out of five quantitative metrics (mean squared error, shape score, GABA+/water fit error, and full width at half maximum). The metabolite concentrations estimated (GABA+/water, GABA+/Cr, and Glx/water) were consistent with the metabolite concentrations estimated using typical GABA-edited MRS scans reconstructed with the full amount of typically collected transients. Conclusion: The proposed Spectro-ViT model achieved state-of-the-art results in reconstructing GABA-edited MRS, and the results indicate these scans could be up to four times faster.