This paper proposes a multi-level cooperative architecture to balance the spectral efficiency and scalability of cell-free massive multiple-input multiple-output (MIMO) systems. In the proposed architecture, spatial expansion units (SEUs) are introduced to avoid a large amount of computation at the access points (APs) and increase the degree of cooperation among APs. We first derive the closed-form expressions of the uplink user achievable rates under multi-level cooperative architecture with maximal ratio combination (MRC) and zero-forcing (ZF) receivers. The accuracy of the closed-form expressions is verified. Moreover, numerical results have demonstrated that the proposed multi-level cooperative architecture achieves a better trade-off between spectral efficiency and scalability than other forms of cell-free massive MIMO architectures.