Unmanned aerial vehicles (UAVs) can be utilized as aerial base stations (ABSs) to provide wireless connectivity for ground users (GUs) in various emergency scenarios. However, it is a NP-hard problem with exponential complexity in $M$ and $N$, in order to maximize the coverage rate of $M$ GUs by jointly placing $N$ ABSs with limited coverage range. The problem is further complicated when the coverage range becomes irregular due to site-specific blockages (e.g., buildings) on the air-ground channel, and/or when the GUs are moving. To address the above challenges, we study a multi-ABS movement optimization problem to maximize the average coverage rate of mobile GUs in a site-specific environment. The Spatial Deep Learning with Multi-dimensional Archive of Phenotypic Elites (SDL-ME) algorithm is proposed to tackle this challenging problem by 1) partitioning the complicated ABS movement problem into ABS placement sub-problems each spanning finite time horizon; 2) using an encoder-decoder deep neural network (DNN) as the emulator to capture the spatial correlation of ABSs/GUs and thereby reducing the cost of interaction with the actual environment; 3) employing the emulator to speed up a quality-diversity search for the optimal placement solution; and 4) proposing a planning-exploration-serving scheme for multi-ABS movement coordination. Numerical results demonstrate that the proposed approach significantly outperforms the benchmark Deep Reinforcement Learning (DRL)-based method and other two baselines in terms of average coverage rate, training time and/or sample efficiency. Moreover, with one-time training, our proposed method can be applied in scenarios where the number of ABSs/GUs dynamically changes on site and/or with different/varying GU speeds, which is thus more robust and flexible compared with conventional DRL-based methods.