Real-world images taken by different cameras with different degradation kernels often result in a cross-device domain gap in image super-resolution. A prevalent attempt to this issue is unsupervised domain adaptation (UDA) that needs to access source data. Considering privacy policies or transmission restrictions of data in many practical applications, we propose a SOurce-free image Super-Resolution framework (SOSR) to address this issue, i.e., adapt a model pre-trained on labeled source data to a target domain with only unlabeled target data. SOSR leverages the source model to generate refined pseudo-labels for teacher-student learning. To better utilize the pseudo-labels, this paper proposes a novel wavelet-based augmentation method, named Wavelet Augmentation Transformer (WAT), which can be flexibly incorporated with existing networks, to implicitly produce useful augmented data. WAT learns low-frequency information of varying levels across diverse samples, which is aggregated efficiently via deformable attention. Furthermore, an uncertainty-aware self-training mechanism is proposed to improve the accuracy of pseudo-labels, with inaccurate predictions being rectified by uncertainty estimation. To acquire better SR results and avoid overfitting pseudo-labels, several regularization losses are proposed to constrain the frequency information between target LR and SR images. Experiments show that without accessing source data, SOSR achieves superior results to the state-of-the-art UDA methods.