Soft robots offer adaptability and safe interaction with complex environments. Rapid prototyping kits that allow soft robots to be assembled easily will allow different geometries to be explored quickly to suit different environments or to mimic the motion of biological organisms. We introduce SoftSnap modules: snap-together components that enable the rapid assembly of a class of untethered soft robots. Each SoftSnap module includes embedded computation, motor-driven string actuation, and a flexible thermoplastic polyurethane (TPU) printed structure capable of deforming into various shapes based on the string configuration. These modules can be easily connected with other SoftSnap modules or customizable connectors. We demonstrate the versatility of the SoftSnap system through four configurations: a starfish-like robot, a brittle star robot, a snake robot, a 3D gripper, and a ring-shaped robot. These configurations highlight the ease of assembly, adaptability, and functional diversity of the SoftSnap modules. The SoftSnap modular system offers a scalable, snap-together approach to simplifying soft robot prototyping, making it easier for researchers to explore untethered soft robotic systems rapidly.