https://github.com/XiaoleiQinn/SITSMamba.
Satellite image time series (SITS) data provides continuous observations over time, allowing for the tracking of vegetation changes and growth patterns throughout the seasons and years. Numerous deep learning (DL) approaches using SITS for crop classification have emerged recently, with the latest approaches adopting Transformer for SITS classification. However, the quadratic complexity of self-attention in Transformer poses challenges for classifying long time series. While the cutting-edge Mamba architecture has demonstrated strength in various domains, including remote sensing image interpretation, its capacity to learn temporal representations in SITS data remains unexplored. Moreover, the existing SITS classification methods often depend solely on crop labels as supervision signals, which fails to fully exploit the temporal information. In this paper, we proposed a Satellite Image Time Series Mamba (SITSMamba) method for crop classification based on remote sensing time series data. The proposed SITSMamba contains a spatial encoder based on Convolutional Neural Networks (CNN) and a Mamba-based temporal encoder. To exploit richer temporal information from SITS, we design two branches of decoder used for different tasks. The first branch is a crop Classification Branch (CBranch), which includes a ConvBlock to decode the feature to a crop map. The second branch is a SITS Reconstruction Branch that uses a Linear layer to transform the encoded feature to predict the original input values. Furthermore, we design a Positional Weight (PW) applied to the RBranch to help the model learn rich latent knowledge from SITS. We also design two weighting factors to control the balance of the two branches during training. The code of SITSMamba is available at: