Although numerous algorithms have been proposed to solve the categorical data clustering problem, how to access the statistical significance of a set of categorical clusters remains unaddressed. To fulfill this void, we employ the likelihood ratio test to derive a test statistic that can serve as a significance-based objective function in categorical data clustering. Consequently, a new clustering algorithm is proposed in which the significance-based objective function is optimized via a Monte Carlo search procedure. As a by-product, we can further calculate an empirical $p$-value to assess the statistical significance of a set of clusters and develop an improved gap statistic for estimating the cluster number. Extensive experimental studies suggest that our method is able to achieve comparable performance to state-of-the-art categorical data clustering algorithms. Moreover, the effectiveness of such a significance-based formulation on statistical cluster validation and cluster number estimation is demonstrated through comprehensive empirical results.