In this letter, we present a diffusion model method for signal detection in near-field communication with unknown noise characteristics. We consider an uplink transmission of a near-filed MIMO communication system consisting of multiple mobile terminals and one base station with multiple antennas. Then, we proposed a Maximum Likelihood Estimation Diffusion Detector (MLEDD) aiming at learning the distribution of unknown noise. To this end, we define an error function via Bayes' theorem to detect the source signal. Moreover, we present an implementation of the proposed framework. The performance of the proposed method in terms of bit error rate shows that it outperforms the MLE detector, Detection Network (DetNet), and Maximum Normalizing Flow Estimate method (MANFE) across different signal-to-noise ratios and noise distributions. Especially when the noise distribution is intractable, diffusion, as a state-of-the-art probability model, has the best distribution learning ability compared to other models. These results affirm that this framework can effectively detect signals in near-field scenarios.