Sign Language Production (SLP) is a challenging task, given the limited resources available and the inherent diversity within sign data. As a result, previous works have suffered from the problem of regression to the mean, leading to under-articulated and incomprehensible signing. In this paper, we propose using dictionary examples and a learnt codebook of facial expressions to create expressive sign language sequences. However, simply concatenating signs and adding the face creates robotic and unnatural sequences. To address this we present a 7-step approach to effectively stitch sequences together. First, by normalizing each sign into a canonical pose, cropping, and stitching we create a continuous sequence. Then, by applying filtering in the frequency domain and resampling each sign, we create cohesive natural sequences that mimic the prosody found in the original data. We leverage a SignGAN model to map the output to a photo-realistic signer and present a complete Text-to-Sign (T2S) SLP pipeline. Our evaluation demonstrates the effectiveness of the approach, showcasing state-of-the-art performance across all datasets. Finally, a user evaluation shows our approach outperforms the baseline model and is capable of producing realistic sign language sequences.