This paper presents a novel approach to the problem of semantic parsing via learning the correspondences between complex sentences and rich sets of events. Our main intuition is that correct correspondences tend to occur more frequently. Our model benefits from a discriminative notion of similarity to learn the correspondence between sentence and an event and a ranking machinery that scores the popularity of each correspondence. Our method can discover a group of events (called macro-events) that best describes a sentence. We evaluate our method on our novel dataset of professional soccer commentaries. The empirical results show that our method significantly outperforms the state-of-theart.