Self-supervised learning (SSL) has drawn increasing attention in pathological image analysis in recent years. However, the prevalent contrastive SSL is suboptimal in feature representation under this scenario due to the homogeneous visual appearance. Alternatively, masked autoencoders (MAE) build SSL from a generative paradigm. They are more friendly to pathological image modeling. In this paper, we firstly introduce MAE to pathological image analysis. A novel SD-MAE model is proposed to enable a self-distillation augmented SSL on top of the raw MAE. Besides the reconstruction loss on masked image patches, SD-MAE further imposes the self-distillation loss on visible patches. It guides the encoder to perceive high-level semantics that benefit downstream tasks. We apply SD-MAE to the image classification task on two pathological and one natural image datasets. Experiments demonstrate that SD-MAE performs highly competitive when compared with leading contrastive SSL methods. The results, which are pre-trained using a moderate size of pathological images, are also comparable to the method pre-trained with two orders of magnitude more images. Our code will be released soon.