The dynamic nature of proteins is crucial for determining their biological functions and properties, and molecular dynamics (MD) simulations stand as a predominant tool to study such phenomena. By utilizing empirically derived force fields, MD simulations explore the conformational space through numerically evolving the system along MD trajectories. However, the high-energy barrier of the force fields can hamper the exploration of MD, resulting in inadequately sampled ensemble. In this paper, we propose leveraging score-based generative models (SGMs) trained on general protein structures to perform protein conformational sampling to complement traditional MD simulations. We argue that SGMs can provide a novel framework as an alternative to traditional enhanced sampling methods by learning multi-level score functions, which directly sample a diversity-controllable ensemble of conformations. We demonstrate the effectiveness of our approach on several benchmark systems by comparing the results with long MD trajectories and state-of-the-art generative structure prediction models. Our framework provides new insights that SGMs have the potential to serve as an efficient and simulation-free methods to study protein dynamics.