This paper presents a new benchmark, ScienceWorld, to test agents' scientific reasoning abilities in a new interactive text environment at the level of a standard elementary school science curriculum. Despite the recent transformer-based progress seen in adjacent fields such as question-answering, scientific text processing, and the wider area of natural language processing, we find that current state-of-the-art models are unable to reason about or explain learned science concepts in novel contexts. For instance, models can easily answer what the conductivity of a previously seen material is but struggle when asked how they would conduct an experiment in a grounded, interactive environment to find the conductivity of an unknown material. This begs the question of whether current models are simply retrieving answers by way of seeing a large number of similar input examples or if they have learned to reason about concepts in a reusable manner. We hypothesize that agents need to be grounded in interactive environments to achieve such reasoning capabilities. Our experiments provide empirical evidence supporting this hypothesis -- showing that a 1.5 million parameter agent trained interactively for 100k steps outperforms a 11 billion parameter model statically trained for scientific question-answering and reasoning via millions of expert demonstrations.