The integration of different modalities, such as audio and visual information, plays a crucial role in human perception of the surrounding environment. Recent research has made significant progress in designing fusion modules for audio-visual speech separation. However, they predominantly focus on multi-modal fusion architectures situated either at the top or bottom positions, rather than comprehensively considering multi-modal fusion at various hierarchical positions within the network. In this paper, we propose a novel model called self- and cross-attention network (SCANet), which leverages the attention mechanism for efficient audio-visual feature fusion. SCANet consists of two types of attention blocks: self-attention (SA) and cross-attention (CA) blocks, where the CA blocks are distributed at the top (TCA), middle (MCA) and bottom (BCA) of SCANet. These blocks maintain the ability to learn modality-specific features and enable the extraction of different semantics from audio-visual features. Comprehensive experiments on three standard audio-visual separation benchmarks (LRS2, LRS3, and VoxCeleb2) demonstrate the effectiveness of SCANet, outperforming existing state-of-the-art (SOTA) methods while maintaining comparable inference time.