In the era of data-driven Music Information Retrieval (MIR), the scarcity of labeled data has been one of the major concerns to the success of an MIR task. In this work, we leverage the semi-supervised teacher-student training approach to improve MIR tasks. For training, we scale up the unlabeled music data to 240k hours, which is much larger than any public MIR datasets. We iteratively create and refine the pseudo-labels in the noisy teacher-student training process. Knowledge expansion is also explored to iteratively scale up the model sizes from as small as less than 3M to almost 100M parameters. We study the performance correlation between data size and model size in the experiments. By scaling up both model size and training data, our models achieve state-of-the-art results on several MIR tasks compared to models that are either trained in a supervised manner or based on a self-supervised pretrained model. To our knowledge, this is the first attempt to study the effects of scaling up both model and training data for a variety of MIR tasks.