Policy gradient methods are among the most effective methods for large-scale reinforcement learning, and their empirical success has prompted several works that develop the foundation of their global convergence theory. However, prior works have either required exact gradients or state-action visitation measure based mini-batch stochastic gradients with a diverging batch size, which limit their applicability in practical scenarios. In this paper, we consider classical policy gradient methods that compute an approximate gradient with a single trajectory or a fixed size mini-batch of trajectories, along with the widely-used REINFORCE gradient estimation procedure. By controlling the number of "bad" episodes and resorting to the classical doubling trick, we establish an anytime sub-linear high probability regret bound as well as almost sure global convergence of the average regret with an asymptotically sub-linear rate. These provide the first set of global convergence and sample efficiency results for the well-known REINFORCE algorithm and contribute to a better understanding of its performance in practice.