Sensing and communication technologies have enhanced learning-based decision making methodologies for multi-agent systems such as connected autonomous vehicles (CAV). However, most existing safe reinforcement learning based methods assume accurate state information. It remains challenging to achieve safety requirement under state uncertainties for CAVs, considering the noisy sensor measurements and the vulnerability of communication channels. In this work, we propose a Robust Multi-Agent Proximal Policy Optimization with robust Safety Shield (SR-MAPPO) for CAVs in various driving scenarios. Both robust MARL algorithm and control barrier function (CBF)-based safety shield are used in our approach to cope with the perturbed or uncertain state inputs. The robust policy is trained with a worst-case Q function regularization module that pursues higher lower-bounded reward in the former, whereas the latter, i.e., the robust CBF safety shield accounts for CAVs' collision-free constraints in complicated driving scenarios with even perturbed vehicle state information. We validate the advantages of SR-MAPPO in robustness and safety and compare it with baselines under different driving and state perturbation scenarios in CARLA simulator. The SR-MAPPO policy is verified to maintain higher safety rates and efficiency (reward) when threatened by both state perturbations and unconnected vehicles' dangerous behaviors.