The convolutional neural network (CNN) has been widely applied to process the industrial data based tensor input, which integrates data records of distributed industrial systems from the spatial, temporal, and system dynamics aspects. However, unlike images, information in the industrial data based tensor is not necessarily spatially ordered. Thus, directly applying CNN is ineffective. To tackle such issue, we propose a plug and play module, the Rubik's Cube Operator (RCO), to adaptively permutate the data organization of the industrial data based tensor to an optimal or suboptimal order of attributes before being processed by CNNs, which can be updated with subsequent CNNs together via the gradient-based optimizer. The proposed RCO maintains K binary and right stochastic permutation matrices to permutate attributes of K axes of the input industrial data based tensor. A novel learning process is proposed to enable learning permutation matrices from data, where the Gumbel-Softmax is employed to reparameterize elements of permutation matrices, and the soft regularization loss is proposed and added to the task-specific loss to ensure the feature diversity of the permuted data. We verify the effectiveness of the proposed RCO via considering two representative learning tasks processing industrial data via CNNs, the wind power prediction (WPP) and the wind speed prediction (WSP) from the renewable energy domain. Computational experiments are conducted based on four datasets collected from different wind farms and the results demonstrate that the proposed RCO can improve the performance of CNN based networks significantly.