Graph neural networks (GNNs) have achieved outstanding performance in learning graph-structured data. Many current GNNs suffer from three problems when facing large-size graphs and using a deeper structure: neighbors explosion, node dependence, and oversmoothing. In this paper, we propose a general subgraph-based training framework, namely Ripple Walk Training (RWT), for deep and large graph neural networks. RWT samples subgraphs from the full graph to constitute a mini-batch and the full GNN is updated based on the mini-batch gradient. We analyze the high-quality subgraphs required in a mini-batch in a theoretical way. A novel sampling method Ripple Walk Sampler works for sampling these high-quality subgraphs to constitute the mini-batch, which considers both the randomness and connectivity of the graph-structured data. Extensive experiments on different sizes of graphs demonstrate the effectiveness of RWT in training various GNNs (GCN & GAT).